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Abstract s

In this paper, some existence results for a nonlinear complementarity problem involving

a pseudo-monotone mapping over an arbitrary closed convex cone in a real Hilbert space

are established. In particular, some known existence results for a nonlinear complementarity

problem in a finite-dimensional Hilbert space are generalized to an infinite-dimensional real

Hilbert space. Applications to a class of nonlinear complementarity problems and the study

of the post-critical equilibrium state of a thin elastic plate subjected to unilateral conditions

are given.

Key Words: Nonlinear complementarity problems, variational inequality problems, pseudo-

monotone mappings, monotone mappings, weakly coercive mappings.
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1. Introduction

Let H be a real Hilbert space with inner product (.,.) and norm A nonempty subset

K of H is said to be a cone if Ax E K for all x E K and all A >_ 0. Let K be a closed convex

cone in H with dual cone K*, that is,

K" = {u E H I (Ux) 0, V x E K}.

Let f be a mapping from K into H. We consider the following nonlinear complementarity

problem (NCP): find x E K such that

f(x) E K* and (x,f(x)) = 0.

Such problems were introduced by Karamardian (Ref. 1) and have been extensively studied

in the literature. See, e.g., (Refs. 1-12) and the references therein. Another problem that

is closely related to NCP is the following variational inequality problem (VIP): find x E K

such that

(x - ,f(.)) > 0 for all x E K.

In (Ref. 1, Lemma 3.1), Karamardian has shown that if K is a closed convex cone, then

both VIP and NCP have the same solution set. Therefore, one approach to studying NCP is

by studying VIP over closed convex cones. The purpose of this paper is to use this approach

to prove some existence results for a nonlinear complementarity problem involving a pseudo-

monotone mapping over an arbitrary closed convex cone in a real Hilbert space. Nonlinear

complementarity problems involving pseudo-monotone mappings in Hilbert spaces have not

yet been investigated except for those in the finite-dimensional case. See (Ref. 10). In

Section 2, we shall prove some necessary and sufficient conditions for existcnce of solutions

to variational inequality problems. Then in Section 3, we give some existence results for

solutions to nonlinear complementarity problems by combining existence results given in
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Section 2 with the aforementioned lemma of Karamardian. Finally, in Section 4, we shall

consider some applications to a class of nonlinear complementarity problems studied in (Ref.

9) and the study of the post-critical equilibrium state of a thin elastic plate subjected to

unilateral conditions.

2. Existence Results for Variational Inequality Problems

Let K be a nonempty subset of H. A mapping f : K ) H is said to be continuous on

finite-dimensional subspaces if it is continuous on KnU for every finite-dimensional subspace

U of H with K fl U 5 0. The mapping f is said to be pseudo-monotone (in the sense of

Karamardian (Ref. 10)) if for any x and y in K,

(x - y, f(y)) > 0 implies (x - y, f(X)) > 0,

and f is said to be monotone if

(x - y,f(x) - f(y)) > 0 for all x,y E K.

It is easy to see that if f is monotone, then it is pseudo-monotone, but not conversely. The

mapping f is said to be strictly monotone if the above inequality is strict whenever x and y

are distinct. For other types of generalized monotone mappings we refer readers to (Refs. 13,

14). In (Ref. 13), Karamardian and Schaible introduce varies types of generalized monotone

mappings starting with pseudo-monotone mappings in (Ref. 10), whereas in (Ref. 14), they

present characterizations of differentiable generalized monotone mappings in (Ref. 13) and,

as a special case, of affine-linear generalized monotone mappings.

For any real number x, lxi denotes the absolute value of x. For K C H, int(K), Y(K)

and Kc denote the interior, boundary and complement of K, respectively. For K, B C H,

intK(B) and 49K(B) denote the relative interior and relative boundary of B in K, respectively.

The set K\B denotes the complement of B in K. A subset of a Hilbert space is said to be
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solid if it has a nonempty interior. A cone K is said to be pointed if K fn -K = {0}. Unless

specified otherwise, the topology of a Hilbert space mentioned in this paper refers to the

norm topology.

Lemma 2.1. Let K be a closed convex subset in the real Hilbert space H. Let f be a

pseudo-monotone mapping from K into H which is continuous on finite-dimensional sub-

spaces. Then x E K is a solution of

(u- X,f()) 0 for alluEK (1)

if and only if

(u - x,f(u)) 0 for all u E K. (2)

Proof. Suppose x E K is a solution of (2). Let u E K be arbitrary and for 0 < A < 1

let x\ = Au + (1 - A)x. Then X\ E K, and from (2) we have

A(u - x, f(x\)) > 0.

Hence

(u - x,f(xA)) > 0. (3)

Let A - 0. Then X. -- x along a line segment. By the continuity on finite-dimensional

subspaces, f(XA) converges to f(x) as A goes to 0. It follows from (3) that

(u - X,f() > 0.

Therefore x is a solution of (1).

Conversely, suppose x E K is a solution of (1). Since f is pseudo-monotone, we have

(u- x, f(u)) > 0 for all u EK.
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Thus x is a solution of (2).

The following existence theorem is a key result for the remainder of this paper.

Theorem 2.1. Let K be a closed, bounded, and convex subset in the real Hilbert space

H. Let f be a pseudo-monotone mapping from K into H which is continuous on finite-

dimensional subspaces. Then there exists -t E K such that (x - t, f(t)) > 0 for all x E K.

Proof. Let U be any finite-dimensional subspace of H with K n U $ 0 and let Pu be

the orthogonal projection of H onto U. Let fu = Pu o f, the composition of Pu and f. By

a result of Hartman and Stampacchia (Ref. 15, Lemma 3.1), there exists xu E K n U such

that

(u-xu, f(xu))> O for alluEKnU. (4)

Let A be the family of all finite-dimensional subspaces U of H with K n U -# 0 and let

Ku = {xv I U C V E A}. For U E A, let 7i7 be the weak closure of Ku. Then the family

{/-7 I U E A} has the finite intersection property. Indeed, for U, V E A, let W E A be such

that U U V C W. Then 0 # Kw C Ku n Kv. Since K is closed, bounded, and convex, it is

weakly compact. Also, since 7?7'd C K for all U E A, it follows that nuEA # 0.

Let t E UEA ThO. Suppose u E K is arbitrary and let U E A contain u. Since Ku is

bounded and E W-U", there exists a sequence {x,,} C Ku which converges to ti weakly. By

Lemma 2.1 and (4) we have (u - xn, f(u)) > 0 for all n. The function (u - x, f(u)) is weakly

continuous in x. Letting n go to infinity, we have

(u - ± ,f(u)) > 0 for all u E K.

Hence by Lemma 2.1 again we have

(u- i,f()) > 0 for all u E K.
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Next, we give some necessary and sufficient conditions for the existence of solutions to

the variational inequality problem for unbounded sets.

Theorem 2.2. Let K be a closed convex subset of the real Hilbert space H. Let f

be a pseudo-monotone mapping from K into H which is continuous on finite-dimensional

subspaces. Then the following statements are equivalent:

(i) There exists xi E K such that

(x - t, f(i)) > 0 for all x E K. (5)

(ii) There exist u E K and constant r > hlull such that (x - u, f(x)) > 0 for all x E K with

IIxl-=-r.

(iii) There exists r > 0 such that the set {x E K I xIljj <- r) is nonempty and such that for

each x E K with Jixil r there exists u E K with Ilull < r and (x - u, f(x)) > 0.

(iv) Thtre exists a closed, solid, convex set E in H such that 0 0 K n E is bounded, and

for each x E K n o(E) there exists u E K n int(E) such that (x - u, f(x)) > 0.

(v) There exists a nonempty closed, bounded, convex subset B of K with intK(B) # 0 that

satisfies the following condition: for each x E OK(B) there exists u E intK(B) such

that (x - u, f(x)) > 0.

Proof. (i) implies (ii). Let it be a solution of (5). Then by choosing r > 0 such that

1ill < r and letting u = i, (ii) follows from the pseudo-monotonicity of the mapping f.

(ii) implies (iii). This is obvious.

(iii) implies (iv). Let E = {x E H I Ilxll __ r}. Then (iv) follows from (iii) immediately.

(iv) implies (v). Let B = K n E. Then B is a nonempty closed, bounded, and convex

subset of '. First we claim that ' fl int(E) C inth-(B) and 9,c(B) C K n c(E).



Suppose x E K fl int(E). Then there exists an open set 0 such that x E 0 C E. Then

A = K l o is open in K and x E A. Since A C B, we have A C int,-(B). Therefore

x E intK(B). Hence K n int(E) C intK(B).

Next, suppose x E OK(B). Let A be any neighborhood of x in K. Then A fl B # 0 and

Afn(K\B) # 0. Then 0 # (AfnK nE) C (AfnE). Also

An(K\B) = An(Kn(EUKC))
= An ((K n E': U(K n K'))

= AnKnE.

So A n EC # 0. If A is any neighborhood of x, then A is also a neighborhood of x in K.

Thus A n E 54 0 and A n Ec # 0. Therefore x E K n O(E). Hence 01 (B) C K n 0(E).

Now, let x E 0IK(B). Since c9K(B) C K n 0(E), x E K ni 0(E). Then by (iv), there exists

u E A' n int(E) C intK(B) such that (x - u, f(x)) > 0. Hence (v) follows.

(v) implies (i). By Theorem 2.1 there exists " E B such that

(x - t, f(-)) > 0 for all x E B. (6)

For arbitrary x C K, there are two possibilities.

(a) ± E intK(B). There exists 0 < A < 1 such that Ax + (1 - A)± E B. Then by (6), we

have A(x - t, f(t)) > 0. Thus (x - i, f(.t)) > 0.

(b) t E OK(B). By the condition in (v), there exists u E intK(B) such that

(i - u,f(t)) 0.

Therefore by (6) we have (t-u,f(.t)) = 0. Now choose 0 < A < I such that Ax+(1- A)u E B.

By (6) we have
0 < (A(x- u) + u- ,f())

A (xx-u,f(i))
-- (x - t, f (ff)).

So again (x - i, f(t)) > 0. Hence (x - t, f(.t)) > 0 for all x E K. Therefore i is a solution

to (5).
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In finite-dimensional spaces, the result that (ii) or (iii) implies (i) in Theorem 2.2 without

the assumption of pseudo-monotonicity of f is given in (Ref. 11, Theorem 2.3, 2.4).

3. Existence Results for Pseudo-monotone Complementarity Problems

In this section, we obtain some existence results on solutions to nonlinear complemen-

tarity problems by combining Theorem 2.2 and the following lemma.

Lemma 3.1. Let K be a closed convex cone in the Hilbert space H, and lct f be a

mapping from K into H. Then ± E K satisfies

(x - ,f()) 0 for all x E K

if and only if

f() E K* and (±,f(±))=0.

Proof. This is a special case of (Ref. 1, Lemma 3.1).

By Theorem 2.2 and Lemma 3.1, we have the following necessary and sufficient conditions

for the existence of a solution to a nonlinear complementarity problem.

Theorem 3.1. Let K be a closed convex cone in the real Hilbert space H. Let f be a

pseudo-monotone mapping from K into H which is continuous on finite-dimensional sub-

spaces. Then the following statements are equivalent:

(i) There exists ± E K such that f(±) E K* and (±, f(.)) = 0.

(ii) There exist u E K and constant r > hjull such that (x - u, f(x)) > 0 for all x E K with

jjxjj -r.
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(iii) There exists r > 0 such that for each x E K with Ilxii = r there exists u E K with

1jull <r and (x - u,f(x)) > 0.

(iv) There exists a closed, solid, convex set E in H such that the set K n E is nonempty

and bounded, and for each x E K n O(E) there exists u E K n int(E) such that

(x - u,f(x)) > 0.

(v) There exists a nonempty closed, bounded, and convex subset B of K with nonempty

intK(B) satisfying the following condition: for each x E 9IC(B) there exists u E intK'(B)

such that (x - u, f(x)) > 0.

Before we give some other important sufficient conditions for the existence of a solution

to NCP implied by Theorem 3.1, we recall some definitions.

Let K be a subset of a real Hilbert space H. Let f be a mapping from K into H. Then

f is said to be coercive if

(X, fW) 0 0 as jxll - o and x E K,

and f is said to be weakly coercive if

(x, f(x)) -- oo as lxii -- co and x E K.

The mapping f is said to be ca-monotone if there exists an increasing function a : [0, c0)

[0, oo) with a(0) = 0 and c(r) -* o as r - co such that

(x - y,f(x) - f(y)) __lix - yjja(jjx - ylj) for all x,y E K.

If a(r) = kr for some k > 0, then f is said to be strongly monotone.

Theorem 3.2. Let K be a closed convex cone in the real Hilbert space H. Let f be a

pseudo-monotone mapping from K into H which is continuous on finite-dimensional sub-
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spaces. Then there exists Y E K such that

f(_i) E K* and (t, f(.)) = 0

under each of the following conditions:

Wi limlIll_._.o, xEK (x,f(x)) > 0,

(ii) f is weakly coercive,

(iii) f is coercive.

Proof. (i). By the condition, there exists an r > 0 such that (x, f(x)) > 0 for all x E K

with lixll = r. Therefore the result follows from Theorem 3.1 (ii).

Parts (ii) and (iii) follow directly from (i).

Corollary 3.1. Let K be a closed convex cone in the real Hilbert space H. Let f be a

mapping from K into H which is continuous on finite-dimensional subspaces. Then there

exists a unique solution to NCP under each of the following conditions:

(i) f is strictly monotone and weakly coercive,

(ii) f is strongly monotone,

(iii) f is a-monotone.

Proof. The existence of a solution to NCP follows from Theorem 3.2 directly. The

uniqueness of the solution can be proved by the same argument as that in (Ref. 11, Corollary

3.2).

We note that Corollary 3.1 (ii) extends a result of Nanda and Nanda (Ref. 12, Theorem)

where f is assumed to be strongly monotone and lipschitzian.
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Corollary 3.2. Let K be a closed convex cone in the real [filbert space 11. Let f be a

monotone and coercive mapping from K into H which is continuous on finite-dimensional

subspacts. Then for each u E 11, there exists x E K such that

f(x) - u E K* and (,f(P)-u) =0.

Proof. Let g : K - H H be defined by g(x) = f(x)-u for all z E K. Since f is monotone

and coercive, g is also monotone and coercive. Therefore by Theorem 3.2(ii), there exists

x E K such that g( ,") E K and (i,g()) = 0. Hence the result follows.

We note that the conclusion of Corollary 3.2 may not hold if f is simply assumed to be

weakly coercive. For example, let H = R, the set of real numbers, K = {x E R I x > 0}

and f be a constant mapping from AK into II with f(x) = 1 for all x E A'. Then f is weakly

coercive. But it is clear that for each i > 1, there exists no i E K such that

f(i) - i E '* and (5:,f(i) - u) = 0.

We also note that when H is finite-dimensional, the monotonicity of f in Corollary 3.2

is not needed. See, e.g., (Ref. 11, Theorem 3.1).

Lemma 3.2.Let K be a pointed solid closed convex cone in the real Hilbert space I1 and

let v e int(K*). Then for any a > 0, the set S = {x E K I (x, v) <5 a} is weakly compact.

Proof. It is clear that the set S is weakly closed. Let S' = {y E H I (x, y) < 1, V x E S)

be the polar of S. Since K* has nonempty interior in the norm topology, S' has nonempty

interior in the norm topology. Then by (Ref. 16, Proposition 2.4, p.IV.5), S' has nonempty

interior in the Mackey topology. Since for each x E S we have -a < (x, v) < 0, therefore S

is weakly compact by (Ref. 17, Theorem 1).
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The following result is a generalization of a result of Karamardian (R.ef. 10, Theorem

4.1) to infinite-dimensional spaces.

Theorem 3.3. Let K be a pointed solid closed convex cone in the real Hilbert space

I. Let f be a pseudo-monotone mapping from K into H which is continuous on finite-

dimensional subspaces. Suppose that there exists u E K such that f(u) E int(K*). Then

there exists i E K such that f(i) E K" and (t, f(t)) = 0.

Proof. If (u, f(u)) = 0, then we are done. So we may assume that (11, f(u)) > 0. Let U

be any finite-dimensional subspace of H with u E U and let Pu be the orthogonal projection

of H onto U. Let fu = Pu o f. Since f(u) E int(K*), for each x E K f U with x : 0 we

have

(x, fu(u)) = (x,f(u)) > 0.

Therefore fu(u) E int((K n U)*) by (Ref. 10, Lemma 2.1 (i)). Then by (Ref. 10, Theorem

4.1), there exists xu E K n U such that

fu(xu)E(KOU)* and (xu,fu(xu))=O.

By Lemma 3.1, it follows that

(x - xU,f(xu)) > 0 for all x E K n U.

Let A(u) be the family of all finite-dimensional subspaces U of H with u E U and let

Ku = {xv I U C V E A(u)}. Let S = {x E K I (x,f(u)) < (u,f(u))}. If a E K\S, then

(x - u,f(u)) > 0. Therefore (x - u,f(x)) > 0 and consequently Ku C S for all U E A(u).

For U E A(u), let 77' be the weak closure of Ku. Then the family {/77 I U E A(u)} has

the finite intersection property. Since S is weakly compact by Lemma 3.2 and T77 C S for

all U E A(u), it follows that UEA(u)7 ^ U - 0. Let x E OvTEA(u)h--. By the same argument
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as that in the proof of Theorem 2.1, we have

(x- t',f( i)) > 0 for all x E K.

Hence by Lemma 3.1, we have f(;t) E K* and (t, f(t)) = 0.

We note that by the same argument as that in the proof of Theorem 3.3 a similar existence

result for variational inequality problems can be obtained as follows (cf. (Ref. 7, Theorem

3.4)):

Let K be a closed convex set in the real Hilbert space H. Let f be a pseudo-monotone

mapping from K into H which is continuous on finite-dimensional subspaces. Suppose that

there exists u E K such that f(u) E int(K*). Then there exists a vector x E K such that

(x - x, f(.t)) > 0 for all x E K, where K* is defined exactly as in the case where K is a

convex cone.

A result similar to Theorem 3.3 is proved in (Ref. 2, Theorem 4) with a different approach.

4. Some Applications

In this section, we shall consider some applications of existence results established in

Section 3 to a class of nonlinear complementarity problems studied in (Ref. 9), and in

particular, to the study of the post-critical equilibrium state of a thin elastic plate subjected

to unilateral conditions.

Let K c H be a closed convex cone and let L 1, L2 : K . H be two mappings. The

nonlinear complementarity problem (NCP)(T,K) is to find x E K such that T(x) E K*

and (x,T(x)) = 0 where T(x) = x - Li(x) + L 2(x) for each x E K. Such problems

were studied in (Ref. 9) and were used as mathematical models for mechanical problems,

especially for the study of the post-critical equilibrium state of a thin elastic plate subjected

to unilateral conditions. By employing Theorem 3.2(i), we have the following existence reusit

12



for (NCP)(T, K):

Theorem 4.1. Suppose the mapping T is pseudo-monotone and is continuous on

finite-dimensional subspaces. If limlIXl_.., zEK (x, T(x)) > 0, then there exists a solution to

(NCP)(T, K).

Remark 4.1. In Theorem 4.1, the closed convex cone K need not be necessarily pointed

and the mapping T need not be the one-sided Giteaux directional derivative of a functional

defined on K (cf. (Ref. 9, Theorem 3.1)).

Remark 4.2. Problem (NCP)(T, K) will have a unique solution if both the mappings

-L 1 and L 2 are monotone since in this case the mapping T is strongly monotone. The

uniqueness of the solution of problem (NCP)(T, K) was not discussed in (Ref. 9).

Next, we consider another application to the study of the post-critical equilibrium state

of a thin elastic plate subjected to unilateral conditions. We adopt the notations used in

(Ref. 9).

Let fl be a thin elastic plate whose thickness is supposed to be constant and which rests

without friction on a flat rigid support. The material is also supposed to be homogeneous

and isotropic. Mathematically, 12 may be identified as a bounded open connected subset of

R 2 . The plate fQ is assumed to be clamped on -/I C Q2 and simply supported on -Y2 = y'yi,
where -y is the boundary of Ql which is supposed to be sufficiently regular.

Suppose that a lateral variable load AL is applied to the boundary of fI where A is a fixed

positive real number representing the magnitude of lateral loading. Consider the Sobolev

space

H 2(1) = {u E L2(Ql) I OtU/aXi,9 2u/ 2Oxixj E L2(Ql), V i,j = 1,2}

13



equipped with the norm jj •111 2(Q), and let E be the closed subspace of H 2 ( Q) defined by

E = {z E H 2(Q) I Z1, = 0, and az/Onl,, = 0, a.e.

where n denotes the normal to -t exterior to 0 and D(.)/an denotes the normal exterior

derivative. We may equip E with the inner product defined by a continuous bilinear form on

E x E such that the associated norm is equivalent to the initial norm 11 • IIH2(o) (See Ref. 9).

The post-critical equilibrium state of the plate subjected to unilateral conditions is governed

by the following variational inequality: Find x E K such that

(z - w,w - AL(w) + C(w)) > 0 for all z E K, (7)

where K = {z E E I z > 0 a.e. on f} represents the admissible vertical displacements of the

plate; L is a self-adjoint linear compact operator defined by the nature of the load applied

on the boundary of 0; and C is a bounded nonlinear continuous operator connected with

the expansive properties of the plate. In practice, the mapping C is also assumed to be a

G .teaux derivative of a nonlinear functional ) such that 4)(0) = 0 (See, e.g., (Ref. 18)). In

this case, w = 0 is a trivial solution to problem (7). The existence of a nonzero solution

depends on the forces of magnitude A. See (Ref. 9) for a detailed discussion on this issue.

For more detailed discussion on the problem (7), we refer readers to (Refs. 9, 18) and the

references therein.

Since K is a closed convex cone, by Lemma 3.1, problem (7) is equivalent to problem

(NCP)(T, K) where T(x) = x - AL(x) + C(x) for all x E K. Therefore, by Theorem 4.1, we

have the following existence result for problem (7), and hence the existence of the post-critical

equilibrium state of a thin elastic plate subjected to unilateral conditions:

Theorem 4.2. Suppose that the mapping T is pseudo-monotone and also suppose that

lml M--II.00XEK (x, T(x)) > 0. Then there exists a solution to problem (7).
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Finally, by Remark 4.2, we have the following result concerning with the uniqueness of

the post-critical equilibrium state of a thin elastic plate subjected to unilateral condition,:

Theorem 4.3. Suppose that both the mappings -L and C are monotone. Then there

exists a unique solution to problem (7).

Remark 4.3. Other results in Section 3 can also be employed to obtain existence results

for problem (NCP)(T, K) and problem (7).
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